수입대행 2

[무역|4|Plotly] 에어컨 계절 수출입 수요 - plotly bar plot & subplot (3부)

[무역|4|Plotly] 에어컨 계절 수출입 수요 - plotly bar plot & subplot (3부) plotly의 시각화 코드를 한 줄씩 살펴 보시겠습니다.fig = make_subplots(rows=1, cols=2, specs=[[{"type": "bar"}, {"type": "bar"}]])fig.add_trace(go.Bar(y=y1, x=z1, name="수출실적"), row=1, col=1)fig.add_trace(go.Bar(y=y2, x=z1, name="수입실적"), row=1, col=1)fig.add_shape(type="line",x0=z1.iloc[0],x1=z1.iloc[z1.count()-1],y0=y1.mean(),y1=y1.mean(), line=dict(color..

[무역|4|Plotly] 에어컨 계절 수출입 수요 - plotly 기본 확장 (1부)

[무역|4|Plotly] 에어컨 계절 수출입 수요 - plotly 기본 확장 (1부)     안녕하세요.  이번 포스팅 주제는 에어컨의 계절별 수출입 수요 흐름입니다.   무역3번 주제까지 matplotlib 기본을 알아보던 중이었는데요. 생활1번 주제 '자전거 대여소 공간데이터 시각화'를 하면서 plotly를 사용해 보게 되었습니다. 사용해 볼 수록 구문 구성이 매우 간편한 형태라서 제가 matplotlib을 맨땅에 헤딩하고 배우던 때에 대비해서 상당히 짧은 시간내에 많은 기능에 대해 익힐 수 있었는데요.   matplotlib도 훌륭하지만 plotly의 시각적 효과 부터 해서 간단한 구문 사용방식과 다양한 인자 반영까지, built-in 되어 있는 많은 것들이 matplotlib보다 편이성을 주는 측..